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A neural network for online portfolio selection
with side information

Dissertação de Mestrado

Dissertation presented to the Programa de Pós-Graduação em
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Milidiú. — 2018.

65 f. : il. ; 30 cm

Dissertação (Mestrado em Informática)-Pontif́ıcia Univer-
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Abstract

Schütz, Guilherme Augusto; Milidiú, Ruy Luiz (advisor). A neural
network for online portfolio selection with side information.
Rio de Janeiro, 2018. 65p. Dissertação de Mestrado — Departamento
de Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

The financial market is essential in the economy, bringing stability, access

to new types of investments, and increasing the ability of companies to access

credit. The constant search for reducing the role of human specialists in

decision making aims to reduce the risk inherent in the intrinsic emotions

of the human being, which the machine does not share. As a consequence,

reducing speculative effects in the market, and increasing the precision in the

decisions taken. In this paper, we discuss the problem of selecting portfolios

online, where a vector of asset allocations is required in each step. The proposed

algorithm is the multilayer perceptron with side information - MLPi. This

algorithm uses neural networks to solve the problem when the investor has

access to future information on the price of the assets. To evaluate the use of

side information in portfolio selection, we empirically tested MLPi in contrast

to two algorithms, a baseline and the state-of-the-art. As a baseline, buy-and-

hold is used. The state-of-the-art is the online moving average mean reversion

algorithm proposed by Li & Hoi (2012). To evaluate the use of side information

in the algorithm MLPi a benchmark based on a simple optimal solution using

the side information is defined, but without considering the accuracy of the

future information. For the experiments, we use minute-level information from

the Brazilian stock market, traded on the B3 stock exchange. A price predictor

is simulated with 7 different accuracy levels for 200 portfolios. The results show

that both the benchmark and MLPi outperform the two algorithms selected,

for asset accuracy levels greater than 50%, and on average, MLPi outperforms

the benchmark at all levels of simulated accuracy.

Keywords
Machine Learning; Neural Networks; Online Learning; Portfolio

Selection; Computational Finance; Convex Optimization;
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Resumo

Schütz, Guilherme Augusto; Milidiú, Ruy Luiz. Uma rede neural
para o problema de seleção online de portfólio com informação
lateral. Rio de Janeiro, 2018. 65p. Dissertação de Mestrado —
Departamento de Informática, Pontif́ıcia Universidade Católica do Rio
de Janeiro.

O mercado financeiro é essencial na economia, trazendo estabilidade,

acesso a novos tipos de investimentos, e aumentando a capacidade das

empresas no acesso ao crédito. A constante busca por reduzir o papel de

especialistas humanos na tomada de decisão, visa reduzir o risco inerente

as emoções intŕınsecas do ser humano, do qual a máquina não compartilha.

Como consequência, reduzindo efeitos especulativos no mercado, e aumentando

a precisão nas decisões tomadas. Neste trabalho é discutido o problema de

seleção de portfólios online, onde um vetor de alocações de ativos é requerido

em cada passo. O algoritmo proposto é o multilayer perceptron with side

information - MLPi. Este algoritmo utiliza redes neurais para a solução do

problema quando o investidor tem acesso a informações futuras sobre o preço

dos ativos. Para avaliar o uso da informação lateral na seleção de portfolio,

testamos empiricamente o MLPi em contraste com dois algoritmos, um baseline

e o estado-da-arte. Como baseline é utilizado o buy-and-hold. O estado-da-arte

é o algoritmo online moving average mean reversion proposto por Li & Hoi

(2012). Para avaliar a utilização de informação lateral no algoritmo MLPi

é definido um benchmark baseado numa solução ótima simples utilizando a

informação lateral, mas sem considerar a acurácia da informação futura. Para

os experimentos, utilizamos informações a ńıvel de minuto do mercado de

ações brasileiro, operados na bolsa de valores B3. É simulado um preditor

de preço com 7 ńıveis de acurácia diferentes para 200 portfólios. Os resultados

apontam que tanto o benchmark quanto o MLPi superam os dois algoritmos

selecionados, para ńıveis de acurácia de um ativo maiores que 50%, e na média,

o MLPi supera o benchmark em todos os ńıveis de acurácia simulados.

Palavras-chave
Aprendizado de Máquina; Redes Neurais; Aprendizado em tempo

real; Seleção de portfólio; Finanças computacionais; Otimização

convexa;
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A good player is always lucky.

Capablanca
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1
Introduction

The financial market plays an important role in the economy, increasing

companies liquidity and offering more options to economic agents for investing

their savings. Portfolio selection (PSP) is a well known problem, both in

the finance and machine learning communities. It consists of choosing how

much to invest in each one of the available assets in a market. For each

time step t = 1, . . . , T , it asks for an allocation b(t) in m assets, where

b(t) = (b1(t), . . . , bm(t)) and

b1(t) + · · ·+ bm(t) = 1 .

The main finding over recent years is the design of algorithms that offer a

rebalancing strategy, changing b(t) at each time step, with some enhancement

guarantees over a fixed strategy. Two types of regret based algorithms have

been developed for PSP in the last decades, namely: Follow-the-Winner (FTW)

and Follow-the-Loser (FTL). The FTW algorithms (Hazan et al., 2007), choose

the best assets in the past to make the portfolio allocation decision. On the

other hand, the FTL algorithms buy losers and sell winners. This stands on

the reversion to the mean hypothesis, where stock prices tend to achieve a

historical mean value over time. The surveys by Li & Hoi (2016) and Dochow

(2016) summarise these findings.

Some of the most known portfolio selection algorithms follows the seminal

work of Cover (1991). Next, we enumerate six of this algorithms: UP, ONS,

OLMAR, EG, AC and CWMR. The universal portfolio (UP) is the first

universal algorithm, i.e., one that presents asymptotically regret bounds over

fixed strategies in hindsight. For FTL algorithms, it is difficult to obtain a lower

bound regret on the performance in comparison to a benchmark algorithm,

since there is no guarantee of the mean reversion hypothesis.

Helmbold et al. (1998) propose the exponential gradient (EG) strategy,

which maximises the expected logarithmic return, estimated by the last relative

return, and also minimises the deviation from the last allocation. It can be seen

as a variant of gradient descent but performing sub-optimal regret. Borodin

et al. (2004) propose the anti correlation algorithm (AC), with the underlying
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A neural network for online portfolio selection with side information 14

assumption that if an asset in a past time window shows a distinctly different

performance than other assets, it is more likely indicating a counter-movement

of performance in the future. Li et al. (2013) develop the confidence weighted

mean reversion (CWMR), with a novel approach that exploits the second order

information of the portfolio (not the second order information of the assets

returns). It takes advantage of the reversion to the mean property by applying

the confidence-weighted1 learning technique. Additionally, it has a regret bound

and is a universal strategy.

An additional issue, when defining a portfolio strategy, is the uncertainty

of future asset prices. The auxiliary data used to predict future price is called

side information. As a consequence, several research efforts on stock market

focus on the price forecasting task, as described by Patel et al. (2015). Bengio

(1997) explores the use of side information as a learning problem. He evaluates

his strategy with an experiment in the financial market of Canada. The

experiment takes 35 stocks plus the money asset. Its purpose is to show that a

financial objective for the learning phase, such as maximising the return, gives

better results than minimising the squared error or maximising the likelihood.

His initial argument is based on the high noise in the stock market historical

prices.

Reinforcement Learning (RL) has been applied to solve PSP. Moody et

al. (1998) propose the recurrent reinforcement learning model, applied to the

stock market. They also compare it with multiple objective functions, where

the differential Sharpe ratio shows the best results. The proposed trading

algorithm restricts the allocation to only one asset at each time-step. Martinez

et al. (2009) propose a simple rule based decision, just for selecting a portfolio

allocation at each time, using the price prediction of a neural network model

as input.

Here, we propose multilayer perceptron with side information (MLPi), a

novel approach to the online portfolio selection problem (PSP) by incorporat-

ing side information. Our focus here is the management of wealth by portfolio

reallocation at each time step. For that sake, we define a classification task,

where the allocation proportion is the probability of the best classified asset.

We propose the MLPi algorithm for solving this task, using future price in-

formation of a simulated predictor. For the sake of comparison with MLPi,

we select the online Newton step algorithm (ONS) presented by Agarwal et

al. (2006). ONS is chosen since it is universal, and also the first polynomial

time algorithm for PSP. Another algorithm that we implement in this work

1 The confidence-weighted (CW) learning is proposed by Crammer et al. (2009) as an
algorithm that updates both the classifier and the estimate of their parameters confidence.
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A neural network for online portfolio selection with side information 15

is the online moving average mean reversion algorithm (OLMAR). This is an

algorithm (Li & Hoi, 2012) from the FTL family, that assumes the reversion to

the mean hypothesis. It also takes advantage of side information as well, but in

a simplified way, that is, by using the moving average of the last w time-steps.

The main contributions of our work are the following:

1. the integration of price prediction models into an algorithm for solving

PSP;

2. a neural network based solution to the PSP;

3. a new benchmark algorithm OPTi, using a naive optimal decision,

restricted to a finite solution and incorporating side information;

4. an empirical validation of the MLPi and OPTi with historical data from

B3 stock exchange;

5. the simulation of an asset price predictor for several levels of accuracy,

indicating an expected accuracy threshold that a prediction algorithm

should perform;

6. the use of the cosine similarity as a portfolio validation metric for the

training phase.

This work is organised as follows. In Chapter 2, we present a formal

statement of the general PSP problem. In Chapter 3, we review some basic

concepts of the literature. In Chapter 4, we formalise the selected algorithms,

including ONS and OLMAR. In Chapter 5, we discuss and formalise the

proposed MLPi algorithm. In Chapter 6, we report our findings on the

empirical experiments and comparative analysis of the selected algorithms.

In Chapter 7, we outline our main conclusion and propose some future work.
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2
Problem Statement

In this chapter, we provide a formal definition for the PSP and its

extension, the general portfolio selection problem (GPSP). Next, we define

the optimal benchmark with side information.

2.1
General portfolio selection problem

An asset is a financial product. It is commercialised by shares, that

represent ownership of asset parts. Here, we assume that shares are infinitely

divisible. A portfolio is a selection of m assets. Given a fixed amount of wealth,

an allocation strategy is a setting of different proportions of wealth in the assets

of a portfolio. A reallocation of wealth can be made on the m assets at the

beginning of each time instant with t = 1, . . . , T and T ≥ 1. All available

wealth should be allocated on assets, so it is possible and convenient to have

a money asset, which is assumed to have constant price for all t. We refer to

A as all assets including the money asset, and to A∗ as all assets without the

money asset. The price is a relative conversion rate between two assets, with

infinite available buyers and sellers willing to trade.

Definition 1 Assume that, for each time instant t = 1, . . . , T , we are given m

assets, with m ≥ 2. Then, PSP is the online problem that asks for a sequence

b(t) = (b1(t), . . . , bm(t)) of asset transactions, taking a financial objective into

account.

The general case of PSP is the GPSP, where the financial objective is to

maximise the terminal wealth WT . Formally, GPSP is given by

maximize
b

WT = Wo

T∏

t=0

m∑

i=1

btirti (2-1a)

subject to
m∑

i=1

bti = 1, ∀ t = 0, . . . , T, (2-1b)

bti ≥ 0, ∀ i ∈ A, t = 0, . . . , T (2-1c)
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A neural network for online portfolio selection with side information 17

where rti is asset i return at time step t, given by the relative change on the

asset value1 , that is,

rti =
qti

q(t−1)i

(2-2)

where qti is asset i price at time t. Note that if an investor uses an allocation

b(t) on step t, his wealth changes by a factor of b(t)r(t).

PSP can be viewed as an online convex optimisation problem (Hazan et

al., 2007), where a decision maker takes a sequence of decisions, choosing a

sequence of points in a convex set, from a fixed feasible set. At each chosen

point, a payoff function is defined. For the GPSP, the payoff is a change in the

portfolio wealth after the decision is made.

The objective function (2-1a) returns the wealth WT made at the end of

a given time interval, where Wo is the initial wealth, that we set as Wo = 1.

The constraint (2-1b) states that we cannot allocate more resources than we

have and that all available wealth must be allocated. The constraint (2-1c)

guarantees that there is no short-selling 2.

Now, let us introduce the optimal offline algorithm (OPT), the optimal

solution to the PSP problem. OPT assumes a prescient investor, that is, an

investor with 100% accuracy on its asset return predictions. This is also the

case of an offline algorithm where all future information is know in advance.

In Table 2.1, we present an illustrative example of this algorithm.

0 1 2 3 T = 4

b1 0.50 - 1.00 1.00 -

b2 0.50 1.00 - - 1.00

q1 1.00 1.00 1.00 1.00 1.00

q2 10.00 12.00 9.00 9.00 10.00

r1 1.00 1.00 1.00 1.00 1.00

r2 1.00 1.20 0.75 1.00 1.11

W 1.00 1.20 1.20 1.20 1.33

Table 2.1: Offline solution of the GPSP in a hypothetical portfolio.

Observe that the wealth achieved at the end of the time interval is WT = 1.33.

1 In this work we only analyse the stock market, so qti is the close price of one share of
stock i at step t, as t is an interval of 1 minute, the close price is the price of the last trading
on that minute.

2 Short-selling is the activity of selling an asset without owing that asset.
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A neural network for online portfolio selection with side information 18

The asset b1 is the money asset. We assume no money inflation during the time

interval and define the best asset at step t as the asset of step t that gives the

best wealth at T .

2.2
Optimal benchmark

Our main benchmark is a modification of OPT, since we don’t have the

predicted future price only a classification of the predicted future price. We

refer to this algorithm as the optimal online algorithm with side information

(OPTi), that we detail next.

Consider a model that receives partial information for the return of an

asset i at step t. That is, the model receives a label ρi(t + 1) ∈ {c1, . . . , ck},
indicating a relative price change of asset i at time t + 1, with a probability

p. Now, we describe the algorithm OPTi to be used as a benchmark. Suppose

that the partial information ρ comes from an external source, like an expert.

A naive solution for choosing how much to invest on each asset is to believe

100% on the expert, when the expert has the same p for each asset.

For a ternary classification, where we have a ρi(t) ∈ {−1, 0, 1}, a

greedy solution for OPTi is given. At each time step t an investor receives

information ρi(t + 1) from an expert for each asset i ∈ A, and must decide

how much to invest in each asset i at step t to maximise is terminal wealth.

At each step, the investor use the side information ρ(t + 1) and allocates all

the wealth equally among all assets that will go up, i.e. bti′ = 1
|A′t|

, where

A′t = {i′ ∈ A | ρi′(t + 1) = 1}. When A′t is empty, the investor must allocate

all is wealth in the money asset.
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3
Basic Concepts

The seminal work of Markowitz (1952) introduces the well know mean-

variance model. This is the first PSP contribution to the financial market.

The model aims to minimise the risk of a portfolio expected return. Where

the mean of past returns is the expected return, and the variance of the past

returns is the measure of risk.

This is clearly part of a long period portfolio selection, not only because

of the complexity of the problem at that time but because of investment com-

panies that offer selected portfolios in form of mutual funds as a more secure

investment. The main contribution of Markowitz work is that diversification

of assets when selecting portfolios can reduce the risk with the same expected

return, explained by the negative correlation of assets in that portfolio.

The main strategy for long period investments is the buy-and-hold (BH).

For our given investment horizon of [0, T ], the investor allocates all the wealth

in a portfolio at step 0, and withdraw all amount invested at step T . This is a

fixed strategy, there is no rebalancing of wealth along that investment horizon.

On the other hand, some investor may want to perform changes in his

portfolio allocation, changing the amount of each asset along the investment

horizon. Besides in the real market, there are costs to realise this approach,

which in some ways discourages investors to perform these changes, a lot of

contributions in the past decades make better returns possible over the fixed

strategies.

These strategies are known as rebalancing portfolios. A naive strategy

of this kind is the constant rebalancing portfolio (CRP). For each asset, an

investor defines a constant wealth allocation proportion. Additionally, at each

time step t ∈ {1, . . . , T}, the investor readjusts the allocated amount to that

proportion. Observe that both CRP and BH uniformly distribute the wealth

among the assets in A∗.

A strategy such as the rebalancing portfolios (Kelly, 1956) is called a

Kelly investment. The metaphor for these kind of investments is a betting

game. The gambler’s goal is to maximise its expected return, given the

probability of winning the bet over a multiperiod time step. It is shown that

the gambler should not invest all the available wealth at time zero. In fact, he
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Figure 3.1: Example of the efficient frontier obtained from the Markowitz
mean-variance model for a portfolio with m = 90 assets from B3; the green
line defines the convex set of all possible allocation solutions b over all assets,
expressed by the coloured points; the capital allocation line in blue express
the reward-to-variability ratio, presented by Sharpe (1966), the slope of the
line is the Sharpe ratio, when the line tangent the efficient frontier, coming
from a risk-free ratio (rf = 10%), is called capital market line, is the maximum
reward-to-variability for a given risk-free asset.

should invest along the time steps proportionally to the winning probability.

This is due to the exponential return of the game along the time steps. The

problem is very close to the St. Petersburg paradox, proposed by Nicolas

Bernoulli in the eighteen century. In the financial market, this type of game

is more present in the form of stock options, where the investor bets on the

appreciation/depreciation of an asset in the future. In this case, the investor

can lose all the money invested in that stock option. Nevertheless, the only

way this can happen is in the rare case of a company bankruptcy.

Other variations of strategies are the best CRP (BCRP) and the best BH

(BBH). BCRP’s optimal solution is given by the solution of the objective (3-1)

maximize
b

WBCRP
T = Wo

T∏

t=0

m∑

i=1

b∗i rti (3-1)

Whereas, BBH’s optimal solution is given by the solution of the objective (3-2)
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maximize
b

WBBH
T = Wo

m∑

i=1

b∗i

T∏

t=0

rti (3-2)

Problems (3-1) and (3-2) are restricted to the same constraints of GPSP (2-1b)

and (2-1c). The solution of BBH is clearly the best asset in A.

3.1
Universality and Regret

The comparison of different online algorithms is made by competitive

analysis (Koutsoupias & Papadimitriou, 2000). The performance of an on-

line algorithm ALG is compared to the performance of an offline algorithm

OPT, that knows the input sequence beforehand. There are three types of

worst-case competitiveness, namely: competitive ratio, performance ratio and

comparative ratio. Dochow (2016) shows that all these types are equivalent,

when considering all problem instances and all online and offline algorithms.

A problem instance input x is a possible market, i.e., a portfolio of m assets

and T time steps.

The competitive ratio of an ALG can be defined as

c = max
x

Perf(OPT,x)

Perf(ALG,x)
(3-3)

where x ranges over all possible markets, Perf(·) is a performance function

like WT and OPT is the best performing benchmark. The smaller c the more

powerful is the online ALG. It follows that an ALG is considered c-competitive

if the lower bound for the performance can be formulated as

Perf(ALG,x) ≥ 1

c
Perf(OPT,x) (3-4)

which must be valid for any market x over all possible inputs. The performance

ratio is obtained when the problem instance is restricted to a finite set x ∈ X

c(X) = max
x∈X

Perf(OPT,x)

Perf(ALG,x)
(3-5)

And the comparative ratio when the benchmark algorithms are restricted to

B ∈ B

c(ALG,B) = max
B∈B

max
x

Perf(B,x)

Perf(ALG,x)
(3-6)

therefore, if B consists of all possible online and offline benchmark algorithms,

then c(ALG,B) = c. As noted by Koutsoupias & Papadimitriou (2000), these
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comparisons are unfair since it always gives the worst case for ALG comparing

with OPT.

Fujiwara et al. (2011) propose an average-case performance ratio,

E[c(X)] = E
x∈X

[
Perf(OPT,x)

Perf(ALG,x)

]
(3-7)

where the set X assumes a given distribution. The stock market movements

are assumed to perform a geometric Brownian motion.

Cover (1991) introduces another approach to PSP, the UP. Besides

proposing an algorithm, the author defines universality. An online algorithm

ALG that solves the PSP is universal when it satisfies

1

T
lnWALG

T − 1

T
lnWB

T → 0 as T →∞ (3-8)

where B is the best algorithm in a set B of constant rebalancing algorithms.

What can be generalised to

1

T
ln

1

c(ALG,B)
→ 0 as T →∞ (3-9)

which quantifies the extent of universality, where c is the comparative ratio

between ALG and the best algorithm in B. Observe that, when the comparative

ratio is exponential, the extent of universality does not converge to zero for

increasing T . But it does for a logarithmic and constant comparative ratios.

The performance of an online ALG for PSP is often expressed by the

regret (Dochow, 2016),

regret = − ln
1

c(ALG,B)
= ln c(ALG,B) (3-10)

which an online investor aims to minimise.

Since Cover & Gluss (1986), the class of benchmark algorithms B is

restricted to algorithms that do not change the allocation proportion b over

time steps. Therefore, the common practice is to use the best offline constant

rebalancing portfolio (BCRP) as a benchmark. Even that BCRP perform

sucessive reallocations of wealth among T , the proportions are always the

same. For our purpose, that inserts side information of the available markets,

the OPTi formulated in Section 2.2 seems more fair.
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3.2
Deep learning

The concept of learning as a general process for human beings, is very

close to the concept of machine learning. The difference is that a machine

is requested to perform and learn tasks that a regular human normally

does. Machine learning algorithms use computational methods to “learn”

information from data without relying on predetermined rules. The algorithms

can improve their performance as the number of available samples increases.

A definition on learning is presented by Mitchell (1997, p.2):

Definition 2 A computer program is said to learn from experience

E with respect to some class of tasks T and performance measure

P, if its performance at tasks in T, as measured by P, improves

with experience E.

So, a well defined learning problem should identify these three features: the

class of tasks (T ); the source of experience, i.e., the available information (E);

and the measure of performance (P ) to validate the experience taken.

As stated by Shalev-Shwartz & Ben-David (2014), a learning process is

called online, when it is performed in a sequence of successive rounds. On each

round, the learner receives an instance from a suitable domain. After this,

the learner is asked to predict a label. At the end of the round, that label is

revealed to the learner. With the corrected value in hands, the learner uses

this information to improve future predictions.

A classical learning algorithm is the Perceptron (Rosenblatt, 1958; Fre-

und & Schapire, 1999), which performs simple additive updates, for mistakes

when classifying an incoming instance. This updates are performed by an ac-

tivation function, that indicates whether that new weighted information should

fire changes or not (in a binary activation), or how much of that weighted in-

put should fire changes on the output. A detailed description of the online

Perceptron can be found in Shalev-Shwartz & Ben-David (2014).

Deep learning provides a framework for supervised learning, by adding

more layers and neurons connecting an input to an output data. This struc-

ture increases the complexity of problems that a network can represent and

generalise, but needs more computational resources for solving them.

The multilayer perceptron (MLP) is a sequential composition of single

perceptron layers. The backpropagation algorithm (Rumelhart et al., 1986)

simplifies the gradient computation for the MLP. Composite activation func-

tions are universal function approximators (Cybenko, 1989), giving MLP more

representation power and the ability to learn non-linearly separable problems.
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We enumerate four commonly used activation functions: sign, sigmoid,

ReLU and ReLU6. The sign is a simple binary function that indicates when a

neuron should be fired or not. The sigmoid is given by y = 1
1+e−x

and is widely

used. A problem that can arise with sigmoid is when changes of the gradient are

small (low/high values of x) the neuron dispatch minor changes in the network

reducing the learning capacity, a problem known as ‘vanishing gradients’. The

ReLU – rectified linear units – is expressed as y = max(x, 0), makes the

learning process faster than other functions, and don’t present the ‘vanishing

gradients’ problem (Nair & Hinton, 2010). The ReLU6 is a modification of

ReLU expressed as y = min(max(x, 0), 6), this modification encourages the

model to learn sparse features earlier (Krizhevsky, 2010). The negative part of

ReLU is the ‘dying ReLU’ problem (Maas et al., 2013), that happens when a

large gradient update can inactivate a neuron.

In a supervised learning algorithm, the main goal is to minimise a loss

function. We want to reduce the loss that results when a wrong output given

by Ŷ is predicted, instead of the ground truth value given by Y . A common

and intuitive loss function is the mean squared error (MSE). Bengio (1997)

states that, by minimising a financial goal, we would generate better financial

results. This is the case, due to the high noise information that is common in

this field.

For minimising the loss function and to update the parameters of Ŷ ,

the stochastic gradient descent (SGD) is a common heuristic approach. To

compute these gradients, we use the backpropagation algorithm. Kingma & Ba

(2014) propose the Adam optimiser, which is based on adaptive estimates on

lower-order moments. Adam updates the parameters by using the first and

second raw moment estimates.

A serious problem in deep neural networks is overfitting. This happens

when a network fits well the train dataset, but presents low results in the

validation phase. The network memorises the data, instead of generalising.

The solution to this problem is regularisation, i.e., any modification of the

learning algorithm intended to reduce the generalisation error (Goodfellow et

al., 2016). A common technique is dropout. It consists of randomly dropping

some units from the network during the training phase (Srivastava et al., 2014).

By the end of the training procedure, a composite function with fixed

parameters is generated. Now, the model is ready to perform predictions for

new entries and its prediction quality can be empirically evaluated.
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4
Online Portfolio Selection Algorithms

This chapter formalises the two regret based algorithms implemented for

the experiments, that is, the online Newton step algorithm (ONS) and the

online moving average mean reversion algorithm (OLMAR). It is important to

note that OLMAR is the current state-of-the-art algorithm (Dochow, 2016; Li

& Hoi, 2016).

4.1
Online Newton Step Algorithm

The ONS (Agarwal et al., 2006) takes the first and second order inform-

ation into account. So, for a rt holding period return, giving by

rt =
m∑

i=1

rtibti =
Wt

W(t−1)

(4-1)

it shows the variation of wealth for one trading period. The first order

information can be retrieved by

Θi
t =

∂ ln rt
∂bti

=
rti
rt

(4-2)

and describes the price change of Ai in relation to the holding period return.

Equation (4-2) gives the intuitive notion that, when Θi
t > 1 , the asset Ai

performs better during trading time-step t. Otherwise, it performs worst, when

Θi
t < 1 for the same time-step.

The second order information, can be extracted by

Θij
t =

∂2 ln rt
∂bti∂btj

= −rtirtj
r2
t

(4-3)

and express the combined price change of asset Ai and Aj for i, j = 1, . . . ,m in

relation to the quadratic holding period return. A value of Θij
t < 1 quantifies

that an equally weighted portfolio with only Ai and Aj performs better during

time-step t than the current portfolio bt; such as Ai and Aj perform worst for

Θij
t > 1 than portfolio bt (Dochow, 2016).

DBD
PUC-Rio - Certificação Digital Nº 1621934/CA

DBD
PUC-Rio - Certificação Digital Nº 1612839/CA



A neural network for online portfolio selection with side information 26

For each time-step, the matrix At = [aijt ] is given by

At =




1−∑t
τ=1 Θ11

τ . . . −∑t
τ=1 Θ1m

τ
...

. . .
...

−∑t
τ=1 Θm1

τ . . . 1−∑t
τ=1 Θmm

τ


 (4-4)

Observe that aijt = 1−∑t
τ Θij

τ only on the diagonal cells of the matrix (i = j)

and aijt = −∑t
τ Θij

τ on all the non-diagonal cells of the matrix (i 6= j). Let

A−1
t denote the inverse of At, where the cells are expressed as āijt .

The vector ot combines the first and second order information

ot =




δ(1 + 1
β
)
∑m

j=1 ā
1j
t

∑t
τ=1 Θj

τ
...

δ(1 + 1
β
)
∑m

j=1 ā
mj
t

∑t
τ=1 Θj

τ


 (4-5)

where one component of ot is denoted as oit, with i = 1, . . . ,m. The allocation

for time-step t+ 1 is defined as

bONS
(t+1) = arg min

b∈Bm
(ot − b)TAt(ot − b) (4-6)

For solving (4-6), we use the algorithm and Python code provided by Kraft

(1994) through the SLSQP package1.

4.2
Online Moving Average Mean Reversion Algorithm

This algorithm exploits a price prediction by the moving average and

choose assets by the mean reversion assumption (Li & Hoi, 2012), buying an

asset when its price chance forecast is low, and selling when the forecast is

high.

The moving average for this algorithm can be computed in different ways.

Besides that, the simple moving average is chosen according to Dochow (2016),

that is, given a window size w,

MAw
ti =

∑t
τ=t−w+1 qτi

w
(4-7)

and is combined with the current price by the moving average reversion, given

by

x̃wti =
MAw

ti

qti
(4-8)

1 https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html

https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
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at the end of trading period t. The variable x̃wti quantifies whether the current

price of Ai is greater, with x̃wti < 1, or lower, when x̃wti > 1, than the current

moving average. The market average of a step t can be obtained by

x̄wt =

∑m
i=1 x̃

w
ti

m
. (4-9)

The subsequent step is determine λt, i.e. the Lagrangian multiplier,

λt = max

{
0,

ε−∑m
i=1 btix̃

w
ti∑m

i=1(x̃wti − x̄wt )2

}
(4-10)

where if
∑m

i=1(x̃wti − x̄wt )2 = 0, then λt = 0, and ε is the mean reversion level.

The allocation vector is obtained by

bt+1 = bt + λt(x̃
w
ti − x̄wt ) (4-11)

due to some negative values, the result of Equation (4-11) requires a projection

onto the simplex Bm, the algorithm can be found in Dochow (2016, pag. 88).
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5
Online Multilayer Perceptron with Side Information

The portfolio selection process (Markowitz, 1952) can be divided into

two subtasks. The first one is price level forecasting, that we call asset

price prediction problem (APP). The second subtask is the portfolio selection

problem (PSP). At each time step t, APP asks for a prediction ρi(t + 1),

related to the asset i rate of return ri(t + 1). On the other hand, PSP asks

for an allocation vector b(t) = (b1(t), . . . , bm(t)) that distributes the available

wealth through the assets at the beginning of each trading period t. Hence,

W0bi(1) gives the wealth allocated to asset i at the beginning of step 1. The

model ensures that all wealth is allocated, since
∑m

i=1 bi(t) = 1 for all t ∈ [1, T ].

Now, let ρρρ(t+1) = (ρ1(t+1), . . . , ρm(t+1)) represent the class levels of the

rate of return vector r(t+ 1). To illustrate, consider 3 class levels, where ρi(t)

indicates that the price of asset i goes up (1), down (-1), or stays equal (0) at

time t. We want that PSP finds an allocation with the given side information

ρρρ(t + 1). The idea is to see the problem as a classification task, where an

algorithm returns a probability vector b̂bb(t) of the best allocation proportion

bbb∗(t) from a benchmark algorithm. The higher the value of b̂i, the higher the

bt+1

MLPi

, ,rt Wt ρt+1

 

 
market 

simulation 
APP 

simulation 

Figure 5.1: Overview of the online multilayer perceptron with side information
(MLPi) algorithm. APP is randomly simulated, providing ρρρ(t+1) with 7 levels
of accuracy. The market simulation embraces historical data from B3 without
transaction costs.
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chance that asset i is the best asset, for a given time interval.

We propose the online multilayer perceptron with side information

(MLPi) for solving the PSP. Basically, we aim to use a future price classifier

given by an external expert, which feeds another model with asset price

information to make the decision on how much to invest for each portfolio

asset. An overview is available in Figure 5.1.

5.1
MLPi Architecture

The architecture of MLPi is a multilayer perceptron (MLP), with 8 layers.

The model receives the future price classification vector ρ(t) as input and

returns the allocation proportion b̂t. Equations (5-1) identify all the layers of

this nonlinear functions,

Y0 = α(ρw0 + c0) (5-1a)

Y1 = α(Y0w1 + c1) (5-1b)

. . . (5-1c)

b̂ = Y = σ(Y6w7 + c7) (5-1d)

therefore, b̂ assumes the values returned by the function Y , the output layer; α

are the activation functions for the hidden layers, and σ is the softmax function

or normalized exponential function, given by Equation (5-2),

σ(z)j =
ezj∑m
i=1 e

zi
∀ j = 1, . . . ,m (5-2)

so the model can retrieve the probability of corrected classification where∑m
j=1 σ(z)j = 1 and σ(z)j ∈ (0, 1].

The α activation function used is Rectified Linear Unit (ReLU) presented

by Nair & Hinton (2010) that has the output of y = max(x, 0), with a little

modification as proposed in Krizhevsky (2010), expressed as ReLU6, with the

output y = min(max(x, 0), 6). Accordingly to the authors this modification

encourages the model to learn sparse features earlier. Figure 5.2 has a graph

representation of the architecture, identifying that each activation function is

performed element-wise. The edges of the graphs represent the weights w of

each associated input-output neuron. The size of each weights are listed in

Table 5.1. We call the algorithm MLPi, as we are using information from APP

for asset allocation decisions, the correct classification ρ∗ is only used when it

becomes available for updating parameters of Y .
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Layer Parameter Input Output Size

0 w0 6 600 3, 600
1 w1 600 400 240, 000
2 w2 400 180 72, 000
3 w3 180 120 21, 600
4 w4 120 80 9, 600
5 w5 80 60 4, 800
6 w6 60 30 1, 800
7 w7 30 6 180

Total 353, 580

Table 5.1: Parameter size for a 8 layers illustrative network.

Input

Layer

Hidden

Layers
Output

Layer

Input

data

ρ Y0 Y1 Y. . .

y0,1

y0,2

y0,3

...

y0,599

y0,600

y1,1

y1,2

y1,3

...

y1,399

y1,400

y7,1

y7,2

y7,3

y7,4

y7,5

y7,6

ρ1

ρ2

ρ3

ρ4

ρ5

ρ6

. . .

Figure 5.2: Graph representation of the architecture of the proposed MLPi
algorithm. Each neuron yk,i is the result of the activation of the weighted input
of asset i, of the k-th layer, with m = 5 + 1 assets.
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5.2
MLPi Loss

One may think that the simple maximisation of terminal wealth would

be a sufficient objective of this task. But our model receives a prediction from

a ternary classifier, and therefore, it should be safer to use information from a

benchmark algorithm.

The objective of a deep learning task is to minimise a loss function (Good-

fellow et al., 2016). Three main loss functions are initially tested: (i) maxim-

isation of terminal wealth; (ii) minimisation of wealth absolute difference; and

(iii) minimisation of regret.

The loss function (i) is the terminal wealth, given by

Wτ =
τ∏

t=0

m∑

i=1

rtib̂ti (5-3)

where τ is a subset interval, τ ⊂ {1, . . . , T}. In our initial validation, the

network could not learn, and has terminal wealth worst than optimal online

algorithm with side information (OPTi).

The loss function (ii) is the average absolute difference between the OPTi

and MLPi, based on Cesa-Bianchi et al. (1997).

ADτ =

∑τ
t=0

∣∣∣
∑m

i=1 rtib
∗ −∑m

i=1 rtib̂
∣∣∣

τ
(5-4)

The Equation (5-4) gives us an interesting approach, the absolute op-

erator makes possible for the learning algorithm to escape from the OPTi in

compensation of some positive rewards, when
∑
rtib
∗ <

∑
rtib̂. But when∑

rtib
∗ >

∑
rtib̂ with a same difference, the minimisation has the same value.

Although it seems convenient to inform the network when this difference on

wealth is positive and when is negative, i.e. when our algorithm performs bet-

ter than the OPTi, and when it does not. Indeed, this loss function could learn

over increase t, but with results very close to the OPTi.

The loss function (iii) is the regret with respect to OPTi and presents

outstanding results for initial validation. So the proposed objective is to

minimise the difference of the periodic logarithmic percentage yield given by

Equation (5-5). Since the logarithmic and exponential function are monotonic

for any function f : R>0 → R, the loss function of Equation (5-5) minimise

the wealth difference too.
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loss = ln

(
τ∏

t=1

m∑

i=1

rtib
∗
ti

) 1
τ

− ln

(
τ∏

t=1

m∑

i=1

rtib̂ti

) 1
τ

(5-5a)

=
1

τ

τ∑

t=1

ln

(
m∑

i=1

rtib
∗
ti

)
− 1

τ

τ∑

t=1

ln

(
m∑

i=1

rtib̂ti

)
(5-5b)

=
1

τ

τ∑

t=1

ln

(∑m
i=1 rtib

∗
ti∑m

i=1 rtib̂ti

)
(5-5c)

Equation (5-5) is very close to the Equation (5-4). A main difference

stands, Equation (5-4) aims to learn OPTi, and the goal here, is do better

than OPTi. Giving the model the freedom to learn some relevant information

from the dataset.

To give a visual demonstration, lets consider a hypothetical portfolio Φ

with 3 assets, with an allocation vector given by bΦ = (bΦ
1 , b

Φ
2 , b

Φ
3 ). All possible

solutions for bΦ are given by Figure 5.3. Where the blue dots gives all the

23 − 1 possible solutions for each step of the OPTi algorithm, the orange area

represents all possible solutions for each step of MLPi. With Equation (5-5)

the model has an incentive to experiment regions outside the OPTi solution.

This raises a comparative measure: the distance between the MLPi solution

and its benchmark. As of the solutions b are in the simplex, the cosine distance

is used, as it will always belong to the interval [0, 1].

b
Φ

1

b
Φ

2
b
Φ

3
b
Φ

2

b
Φ

1

b
Φ

3

1

0
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1

Figure 5.3: Hypothetical Portfolio Φ, with 3 assets, solutions are represented
by a standard 2-simplex. Where the standard n-simplex is given by ∆n =
{(b0, . . . , bn) ∈ Rn+1 |∑n

i=0 bi = 1 and bi ≥ 0 for all i}.
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5.3
MLPi Learning

Two algorithms are provided for MLPi. One that performs an initial

training with historical data, and output Ŷ with the updated parameters. The

other uses the fresh information from the market to perform the predicted

allocation proportion b̂(t + 1) = Ŷ (ρρρ(t + 1)) After the model receives the

corrected information, it executes the first algorithm to update the parameters.

The Algorithm 5.1 gives the estimated function Ŷ (ρ) based on the

training dataset to retrieve the allocation proportion b̂(t+1) for a given ρ̂ρρ(t+1).

This algorithm can be executed online, so the model Y can be updated online,

to absorb the fresh information of the market.

Algorithm 5.1: Multi-layer perceptron algorithm (training)

input : rtrain, a matrix T ×m with assets returns
µ, learning rate
epochs, number of loops over the dataset
τ , the batch size
φ, regularisation probability of ρtrain

output: Ŷ (ρ), the estimated function for portfolio selection

Initialisation
Y ← last layer from Equation (5-1)
wl ∼ N(0, 0.1) initial weights parameters of Y for all layer l
cl ← 0 initial bias parameters of Y for all layer l

loss ← 1
τ

∑τ
t=1 ln

(∑m
i=1 rtib

∗
ti∑m

i=1 rtib̂ti

)
, Equation (5-5)

ρtrain ← simulate a prediction over rtrain with probability φ

end
begin

for each epoch in epochs do
ρτ ← get next τ elements from ρtrain
b∗ = run OPTi with ρτ
b̂ ← solution of loss minimisation with parameters ρτ , b

∗

using AdamOptimiser(µ)
update all weights and biases of Y with respect to loss

end

end

For minimising the loss function and update the parameters of Y , given

by the Equation (5-1), a stochastic optimisation algorithm is needed. We

chose the Adam optimiser (Kingma & Ba, 2014). The authors experiments

show better results than the stochastic gradient descent (SGD), and for our

initial validations too. A prediction for an allocation b can be obtained by the

Algorithm 5.2.
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Algorithm 5.2: Online multi-layer perceptron algorithm for portfolio
selection

input : rt, a vector of assets returns at the end of current step t
ρ̂t+1, a vector of predicted classification price for each asset
Ŷ (ρ), the estimated function from Algorithm 5.1

output: b̂t, a vector with size m of the estimated allocation
proportion to be executed at the end of step t

Initialisation
loss ← loss function from Equation (5-5)

end
begin

run Algorithm 5.1 with new vector of assets returns rt
bt ← Ŷ (ρt+1)

end

5.4
Auxiliary Systems

In this work, we assume APP is given by an external source, like an

expert. In the next section we propose a simulation environment for evaluation,

where we use an expert with different accuracy levels. For an example, suppose

that an expert receives some information at t and make a prediction for step

t+ 1, returning a vector ρρρ(t+ 1) identifying the direction of the future price of

each asset. The PSP receives this information and returns a vector b(t+1), the

allocation strategy to be executed at the beginning of step t + 1. The market

simulation just execute that decision returning the total wealth achieved by

the end of step t+ 1. This algorithm can be applied in an online execution, at

each time-step t ∈ [1, T ].

If we could find a price predictor that returns with 100% of accuracy the

next price label for each asset, it’s clear that the best solution is either invest

100% on the best asset, or split the wealth equally among the best assets for

each step. Because it is very unlikely to have that level of accuracy, we can infer

that for any other accuracy, we can still invest more resource on the predicted

best assets, but to prevent errors from the APP model we should invest some

part of the resource in the others assets too.

That is what we expect achieving using a learning algorithm: it can learn

from the dataset assets that are more likely to win in the next step, so instead

of splitting the amount in each best asset, the model can invest slightly more

in one of the best assets. It’s like the model learns to predict the asset price

too.
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5.4.1
Asset Price Predictor

The purpose of this simulation is to validate our model using a predictor

with a given accuracy p, where p is defined as the accuracy score or the Jaccard

similarity coefficient,

accuracy(ρ, ρ̂) =
1

n

n∑

k=1

1(ρk = ρ̂k) (5-6)

it is the proportion of true positives, over all n samples. And ρ is the true

classification of asset prices defined in Section 2.2.

For this experiment, the accuracy p will be constant for all assets in

all portfolios simulations. This means that for any asset on any simulation,

for n = 1000 and p = 0.4, we have 400 correct price classifications, and 600

incorrect classifications. All incorrect classifications are randomly selected by

a uniform distribution of non-true classifications.

This approach simplifies the model, it is clear that if assets have different

accuracy values the OPTi could be improved using this information, and have

a better solution. Solutions for this problem can be found using dynamic

stochastic programming, for example, see Samuelson (1969), Dumas & Luciano

(1991), Mulvey & Vladimirou (1992) and Le Ny (2009). The reinforcement

learning algorithms identified in Chapter 1 have foundations based on the

dynamic stochastic programming theory.

5.4.2
Market Simulation

To evaluate our model, we use a simulated environment with real market

data. A bootstrap simulation approach, proposed by Efron & Tibshirani (1986)

is used to validate the predictors, and give the possibility of estimating some

statistics without knowing the distribution.

Our empirical experiments are detailed in the follow steps:

Step 1: Choose N random portfolios with replacement, each one with m

assets available for each algorithm in the trading period. For each

portfolio, the samples are taken without replacement. So, one asset

can appear in multiple portfolios. Make sure that each portfolio is

unique and that for all portfolios each asset is unique.

Step 2: Generate B predictors, each one with a fixed accuracy p.
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Step 3: Train the proposed algorithm MLPi on the training dataset with the

Algorithm 5.1.

Step 4: Compute the wealth for each time-step t over all B bootstrap simu-

lations for each algorithm with side information (OPTi and MLPi)

with the validation dataset. Take the average wealth simulation for

evaluation metrics.

Step 5: Compute the wealth for each time-step t over all other algorithms

(online moving average mean reversion algorithm (OLMAR), on-

line Newton step algorithm (ONS), constant rebalancing portfolio

(CRP), best offline constant rebalancing portfolio (BCRP) and best

offline buy-and-hold (BBH)) using the validation dataset.

Step 6: For each different accuracy p, go back to Step 2.

The results presented here were obtained by the following parameters:

N = 200 random portfolios, with m = 5 + 1 assets and with B = 100

predictors simulations. The experiments were made with 7 accuracy levels,

[0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75].

As described in Efron & Tibshirani (1986), the bootstrap confidence

interval can be computed over the bootstrap simulations.

Take x̄t as the sample mean of step t of all the B simulations. We want

to know how much the distribution of x̄t varies around µt, i.e. we want to know

the distribution of δ = x̄t−µt. Since we don’t have the value of µt, we can use

the bootstrap simulations

δ∗t = x̄∗t − x̄t (5-7)

where x̄∗t denote the mean obtained by a bootstrap simulation. Therefore, by

the law of large numbers the distribution of δ∗t can be estimated with high

precision.

To compute δ∗t take the x̄∗t obtained by each simulation and sort them

in ascending order. For a 95% of confidence interval, take the 2.5th percentile,

that is, the 2.5th element of our 100 simulations; and for the 97.5th percentile,

take the 97.5th element. As the desired percentile lies between two elements, a

linear interpolation is used, δ∗t.025 = δ∗t.02 + 0.5(δ∗t.03 − δ∗t.02) And the confidence

interval is giving by [x̄t − δ∗t.025, x̄t − δ∗t.975].

A sample of a bootstrap simulation of the predictors for one portfolio is

plotted in Figure 5.4.
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Figure 5.4: Wealth simulation of MLPi for all predictors (B = 100) with
accuracy p = 0.50 for portfolio 144, with assets CSNA3, SBSP3, POMO4,
PETR3, VALE3 and $. The solid blue line is the mean, the solid yellow lines
are upper and lower bounds of bootstrap confidence intervals (yellow filled
area) with significance level of 95%.

5.4.3
Metric Evaluation

To evaluate a trained portfolio the cosine similarity is chosen as an

evaluation metric. The objective here is to define a sufficient value that verifies

if the trained MLPi, with any portfolio Φ, is good enough to be accepted for

an allocation decision. The idea is to decide when the MLPi should be chosen

for an allocation decision.

The proposed algorithm to choose the cosine similarity limit is the

expectation maximisation (EM), proposed by Dempster et al. (1977), it has a

wide range of applications, but the use case here is for clustering the portfolios

by their respective cosine similarity values.

EM as a clustering algorithm is an iterative method, similar to k-means,

that aims to separate the data set into k groups represented by distinct normal

distributions, each with parameters (µk,Σk). With this algorithm is possible

to identify groups in elliptical formats, where an ellipsis can take precedence

over other when they collide based on their weights (an example is specified

in the Figure 6.3).

The algorithm has two steps which are executed by a number of itera-

tions. The expectation stage assigns points to its closest representatives (dis-
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tributions). The distance between a point and a representative is equal to 1

minus the probability of the point belonging to this representative (defined

by the normal distribution). The maximisation step recalculates the (µk,Σk)

parameters of each representative.

Assuming there is a datasetD = {x1, . . . , xn}, where xi is a d-dimensional

vector. In addition, it is also assumed that the points are randomly generated

i.i.d. from a density function p(x).

Each group is then defined by the average of its elements and the

covariance matrix {µk,
∑

k}. Therefore, the probability of x belonging to a

given group k can be obtained by:

P (xk|θk) =
1

(2π)
d
2 |∑k |

1
2

e
−1
2

(x−µk)t(x−µk) (5-8)

where, θk = {µk,
∑

k}.
The algorithm is divided into two steps:

E-Step: Calculate the values of the matrix Qn×k for all points x and all

clusters k. Note that for each given point xi it is valid that:∑K
k=1wik = 1, i.e, each row of the matrix Q of dimension N × K

has a sum equal to 1.

M-Step: Given the probabilities calculated in the previous step, we can now

calculate the new parameters: mean and covariance matrix for each

group.

µnewk =
1∑N

i=1 wik

N∑

i=1

wikxi 1 ≤ k ≤ K (5-9)

The new covariance matrix is given by:

Σnew
k =

1∑N
i=1wik

N∑

i=1

wik(xi − µnewk )t(xi − µnewk ) 1 ≤ k ≤ K (5-10)

The initialisation of the algorithm can be performed in two ways: with an

initial set of parameters and then driven to an E-Step; or with an initial set of

probabilities of each point belong to each group and then do a first M-Step.

Initialisation can also be set using some heuristics, such as using the output

of k-means as input to the method (which is applied in this case).
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6
Experiments

To better evaluate MLPi we simulate the APP model, as an expert, so

we can verify when a good prediction accuracy is enough to retrieve better

wealth against a predefined benchmark.

6.1
B3 Dataset

To empirically validate MLPi, we run a series of stochastic simulations.

The first simulation, is to select the assets that will be available in our market

simulator. For this, we need an information source that gives the desired

granularity of the dataset and a sufficient historical data.

The data is collected from B3, the fusion of BM&FBOVESPA S.A.

Securities, Commodities & Futures Exchange (BM&FBOVESPA) with Cetip

S.A. Organised Markets. BM&FBOVESPA is the only stock exchange in

Brazil. The source of data is from Thomson Reuters1 and the step size is in

minutes, where the price is adjusted for any split, and all dividends and bonus

paid are reinvested. The data is collected from January 2, 2008, to May 4, 2018.

The total of stocks available to the market are the 30 most negotiated of the

last 3 years. Because of the short trading period (one minute), is imperative to

select a list of assets that have enough tradings. For all assets to have data for

the same time interval, when no trading occurs in one minute, the last minute

price is used. If a stock has low tradings, this means too much neutral (ρ = 0)

price change classification in the dataset. All considered symbols, the market

simulator assets are listed in Table 6.1.

The Table 6.2 have a sample of the aggregated raw dataset of trades by

minute. Using the close price as the trading price of our market simulator, the

Table 6.3 represents a sample of a portfolio dataset composed by the assets

1 The Thomson Reuters dataset is available as a paid service by DataScope Select
(DSS), therefore all dataset content have restricted access. Samples information available in
Table 6.2 and 6.3 are extracted from a BM&FBOVESPA service, that keep the historical
information daily updated from the past 2 years, available at ftp://ftp.bmf.com.br/

MarketData/Bovespa-Vista/ accessed in May 6, 2018 6 a.m. GMT, although this dataset
is not recommended for price historical analysis, because there is no price normalisation (for
splits, bonus and dividends).

ftp://ftp.bmf.com.br/MarketData/Bovespa-Vista/
ftp://ftp.bmf.com.br/MarketData/Bovespa-Vista/
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PETR4 BBAS3 ITSA4 ITUB4 GGBR4 BBDC4

ABEV3 CMIG4 KROT3 CIEL3 JBSS3 USIM5

PETR3 BBSE3 CSNA3 GOAU4 CCRO3 BRFS3

VALE3 LAME4 FIBR3 ECOR3 BRML3 EMBR3

MRVE3 HYPE3 LREN3 KLBN11 BRAP4 VIVT4

Table 6.1: Assets available for the market simulator

PETR4, VALE3, ABEV3.2

time-step symbol open close min max trades quantity volume

2015-01-02 10:07 PETR4 9.91 9.93 9.91 9.94 40 38,600 383,147

2015-01-02 10:08 PETR4 9.93 9.93 9.92 9.94 21 19,700 195,543

2015-01-02 10:09 PETR4 9.92 9.91 9.91 9.93 107 67,500 669,595

2015-01-02 10:10 PETR4 9.91 9.89 9.88 9.92 106 103,600 1,025,180

2015-01-02 10:11 PETR4 9.88 9.89 9.88 9.90 33 84,500 835,901

Table 6.2: Sample aggregate raw dataset.

time-step PETR4 VALE3 ABEV3

2015-01-02 10:07 9.93 21.69 16.18

2015-01-02 10:08 9.93 21.74 16.16

2015-01-02 10:09 9.91 21.69 16.20

2015-01-02 10:10 9.89 21.69 16.18

2015-01-02 10:11 9.89 21.70 16.20

Table 6.3: Sample portfolio dataset

There are some technical details of a stock exchange that withhold an

asset to perform trades over a period, like auction, or circuit break and also

happens on some specific intervals of the day. The current stock market trading

period opens at 10:00 a.m. and closes at 16:55 p.m., the after-market is

despised. But since the dataset have data from more than 10 years, things

were different in the past, for this, the open price are defined as the first hour

of any trade occurred for an asset, and the close price are the hour and minute

of the last trade. To make all asset prices available between all minutes of the

trading period and all collected data, 3 actions are taken:

2 Stocks of the respectively companies, PETROBRAS S.A., VALE S.A. e AMBEV S.A.
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(i) when there is no trading on a minute time-step, the price of the last

available minute is repeated;

(ii) when the first price of any day is not available, the last price of the

previous day is used;

(iii) the first day is removed from the dataset.

This gives a final dataset of 1.048.161 minutes of close price for 30 stocks.

6.2
Training and Validation

Our initial results are from the experiments of the training and validation

procedure of the proposed algorithm MLPi. We split the dataset in 3 parts:

train dataset, with 830.953 minutes; validation dataset, with 108.604; and

test dataset, with 108.604. These numbers were chosen to keep the validation

and test datasets in equal-size intervals. This means the train occurs between

January 2, 2008 and April 29, 2016; the validation between May 2, 2016 and

April 28, 2017; and the test between May 1, 2017 and May 3, 2018.

The train process is executed first with the train dataset with Algorithm

5.1. The adjustments of hyperparameters are made using the validation data-

set. Because of the size of the dataset and the quantity of portfolios and sim-

ulations, the tuning phase is limited by time. The adjustments gives us the

following parameters: a batch size of τ = 5.503; a predictor accuracy φ = 0.98;

a learning rate of 0.003; and a dropout regularisation of 0.9.

For evaluation of algorithms, two measures are taken comparing the

allocation proportions given by the MLPi and OPTi. The cosine similarity

Sc(b
OPTi, bMLPi), is given by Equation (6-1),

Sc(p, q) =

m∑
i=1

piqi
√

m∑
i=1

p2
i

√
m∑
i=1

q2
i

(6-1)

and the cross entropy H(bOPTi, bMLPi), by Equation (6-2).

H(p, q) = −
m∑

i=1

pi log qi (6-2)

both measures are very common in classification problems.

Comparing both plots presented in Figure 6.1 and 6.2, it seems that the

cosine similarity has a better fit-to-purpose, that is, find a evaluation metric
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that can reject a portfolio for running with MLPi. Therefore, we argue that the

cosine similarity is a more stable metric for evaluating our proposed model.

We are now facing a problem of when we should choose our proposed

model over the naive OPTi solution. So, we want a limit value of the cosine

similarity to make the decision of not using our proposed model if that limit

in the train phase is lower.

In a practical environment, an investor may wish to not invest in those

portfolios with lower performance. But even that, we want a strategy for

choosing those best portfolios. So, in our test environment, beside selecting

all 200 portfolios, we run 2 investors alternatives for MLPi:

(i) that uses the best performed portfolio in our train dataset;

(ii) select portfolios above a cosine similarity limit.

For the second strategy, we want the x-axis limit that split Figure 6.2 at

least in two groups, the left, and the right side of limit. Take a look at Figure

6.2 it appear to have a 3, maybe 4 clusters of points. The idea is split those

points in 3 classes, and take the cosine similarity limits of the right group.

Three main justifications we have for selecting only this group, the points are

not so dispersed; it contains the best portfolios, in terms of terminal wealth;

they have more similarity with the OPTi solution.

One may think that would be useful to remove portfolios from the right

side too, adding a maximum limit for cosine similarity. But a cosine similarity

that approaches to 1 identifies that the model MLPi fit almost equally to

OPTi. Because of this, is expected that the mean wealth increases when we

move away from the maximum similarity, until it reaches a maximum value

and start to decrease.

In Section 5.4.3 we presented the EM heuristic for defining this limit to

disapprove a trained portfolio. The Figure 6.3 has the result of the EM for the

train and validation set. The estimation of clusters were made with only the

cosine similarity (x-axis), the centroids of each group is represented by “×”.
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Figure 6.1: Cross-entropy compared with the logarithmic terminal wealth
difference achieved by MLPi over the benchmark OPTi, the performance

measure, log1 0
(
WMLPi
T

WOPTi
T

)
during training and validation datasets of all N = 200

random portfolios and p = 0.75 in comparison with the cross entropy. Since
is a logarithmic difference, is visible that the minimum performance is bigger
in magnitude than the maximum performance of MLPi. The Φ∗ and Φ◦ are
respectively, the best and worst terminal wealth portfolios.
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Figure 6.2: Cosine similarity compared with the logarithmic terminal wealth
difference achieved by MLPi over the benchmark OPTi, the performance
measure in comparison with the cosine similarity.
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Figure 6.3: The EM algorithm, with 3 clusters selected of the cosine similarity.
The information on the test dataset is just for comparison, and validation of
this heuristic. The limits to be used is the limit of the train phase, in blue,
where the selected limits, are the vertical lines splitting the rightmost cluster.
With the EM algorithm is possible to find a right limit too, this is, any point
at the right side of the rightmost vertical line, would be classified as part of
the leftmost cluster.
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Figure 6.4: Terminal wealth achieved by all algorithms in the validation
dataset, with initial wealth Wo = 1. The MLPi (i) is the best portfolio of
the train phase. The MLPi (ii) runs with portfolios filtered by the cosine
similarity limit of the train phase.
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6.3
Results

Now that the MLPi is already adjusted and defined, we perform the

market simulation with the test dataset. For testing, the train and validation

are combined and used as the new train dataset, getting a total of 9 years

of trading period (939.557 time steps). All metrics defined in Section 3 are

presented here. Some algorithms presented in the literature review are omitted,

due to poor results.

The Figure 6.5 shows the results in a boxplot format. It is clear that the

variance of portfolios wealth comparison increases as the predictor accuracy

increases. The portfolios bellow the first quartile (identified by the bottom

of each box) are almost the same for all accuracy levels p, 94.3% of equally

portfolios. The relation of all these portfolios are available in Table A.3.

The objective of the PSP is the total wealth achieved at the end of step

T . To give more samples of a terminal step, the wealth W̄ computed is the

average wealth achieved at the end of each month (as the test dataset has

1 year, it gives us 12 terminal wealth samples). The Figure 6.6 shows the

average wealth of the N = 200 selected portfolios, achieved by each portfolio

for all considered accuracy levels of the simulated predictor. It is clear that the

proposed algorithm beat the benchmark OPTi, and for a prediction accuracy

p ≥ 0.50, the algorithm have better results in comparison with the state of the

art literature OLMAR.

Even that MLPi was not tested with a real predictor, a lot of contri-

butions already exist in literature, like Patel et al. (2015), and Chen et al.

(2015). That uses side information from news to predict the future classifica-

tion of the stock price. Besides both works use a binary classification (up or

down), the best accuracy of the predictors is very high, Patel et al. (2015)

presents a naive-Bayes (Gaussian process) that perform with 73.3% accuracy,

and a naive-Bayes (Multivariate Bernoulli Process) with 90.19%. With this, it

is safe to state that our proposed algorithms for portfolio selection can have o

good performance with a real stock price prediction model.

The Figure 6.6, risk versus reward gives us the relation of risk and

return for each portfolio with the selected algorithms. At a first look the MLPi

algorithm could be consider more risky, but since the y-axis is in logarithmic

scale, the difference of the wealth scale very high. Even that, as an investor

recommendation, the metric to compare should be the Sharpe ratio. The

Table A.4 gives all log Sharpe ratios comparison of both algorithms. Selecting

only portfolios with a Sharpe ratio positive difference, gives us that 70.5% of

the total 200 have a higher Sharpe ratio. If only the approved portfolios are
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selected, gives us an approximate 93% of the total 114 approved portfolios.

The execution of the whole experiment is very slow, because the market

is simulated for 200 portfolios, with 7 levels of accuracy for each algorithm.

The train phase, gives us 1.400 executions of the MLPi (Algorithm 5.1 with 20

epochs) with a total runtime of 48 hours. The test phase, with 100 bootstrap

simulations of APP for each portfolio, gives us 140.000 executions of the MLPi

(Algorithm 5.2) for each t = 1, . . . T . The execution of the experiment had

a total runtime around 65 hours for the test phase. The Table 6.4 shows the

average runtime for each algorithm. The MLPi is fast in comparison to the

OLMAR and ONS.

Average Runtime (s)

BCRP 0.5193
OLMAR 44.7463
ONS 152.6816
OPTi 2.6183
MLPi 10.0744

Table 6.4: Comparative on the average runtime in seconds of each algorithm
for 1 portfolio (and the average for 100 bootstrap simulations for MLPi and
OPTi) with the test dataset.
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Figure 6.5: Box plot of benchmark comparison (MLPi vs OPTi). The middle
line of the box is the median, the limits of the box are the first and third
quartile, and the extremes (whiskers) are the confidence intervals for a 95% of
significance. Each dot represent a portfolio. The dots outside the box plot, are
consider outliers.
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Figure 6.6: Terminal wealth achieved by the algorithms in the test dataset,
with initial wealth Wo = 1. The MLPi (i) is the best portfolio of the train
phase. The MLPi (ii) the filtered portfolios by the cosine similarity limit of the
train phase.
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achieved at the end of the test dataset. The cross marker indicates the centroid
for each algorithm.
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7
Conclusions

In this work, we explored the portfolio selection problem (PSP) with side

information using a neural network approach. The main contribution of this

work is the algorithm multilayer perceptron with side information (MLPi). The

MLPi is compared to the state of the art algorithm of the machine learning

community, however, for a predictor validation in different accuracy levels, we

run the experiments with a simulated predictor. Because of this, the selected

benchmark for the comparative metrics is a naive optimal solution to the

problem. Also, we presented an empirical validation in a market simulation

with 10 years of historical data. The experiments show that the MLPi can beat

the online moving average mean reversion algorithm (OLMAR) – the state-of-

the-art – for a predictor with 50% of accuracy. Also, the MLPi outperform the

proposed benchmark optimal online algorithm with side information (OPTi)

on average, in all tested accuracy levels.

Our recommendation as future works continues in the enhancement of

the proposed network and the empirical validation with a real price predictor

(Qian & Rasheed, 2007; Bollen et al., 2011; Patel et al., 2015). Other types

of deep learning models can be tested. Bring more features to the input data,

like the quantity of negotiated shares per interval, or even sentimental analysis

of the market (Bollen et al., 2011). Improve the use of predicted information

with online algorithms, some contributions are found in Shalev-Shwartz & Ben-

David (2014). The redesign of other algorithms, like OLMAR, that already uses

side information (the moving average) to make decisions.

In addition, there is room for improvement of the proposed benchmark

using the predictor’s accuracy with stochastic dynamic programming.
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A
Appendix

This appendix contains data information for elucidating any presumption

taken on the main work, as for verification of the presented charts.

Φ assets

0 EMBR3 CCRO3 BRAP4 BRKM5 BBDC4

1 SBSP3 ITSA4 MRFG3 MRVE3 CYRE3

2 BRML3 CSAN3 PETR4 EMBR3 PCAR4

3 RENT3 WEGE3 GGBR4 USIM5 POMO4

4 CMIG4 BRKM5 CCRO3 BRML3 LAME4

5 MRFG3 GGBR4 BBAS3 ELET3 PETR3

6 JBSS3 GGBR4 CYRE3 ELET3 LAME4

7 RENT3 MRFG3 BRAP4 GGBR4 LAME4

8 CSAN3 USIM5 SBSP3 RENT3 LREN3

9 WEGE3 CYRE3 BRML3 GOAU4 RENT3

10 ENBR3 BBAS3 USIM5 VALE3 GOAU4

11 PCAR4 ITSA4 CYRE3 CSNA3 BBAS3

12 SBSP3 BRAP4 CSNA3 JBSS3 ELET3

13 CMIG4 ELET3 EMBR3 LAME4 CSNA3

14 LAME4 EMBR3 CMIG4 CSAN3 GGBR4

15 GGBR4 CMIG4 BBAS3 MRVE3 BRKM5

16 GGBR4 RENT3 VALE3 CYRE3 BRKM5

17 CCRO3 LAME4 VALE3 SBSP3 POMO4

18 VALE3 MRFG3 EMBR3 ELET3 WEGE3

19 PCAR4 ELET3 BBDC4 RENT3 BRML3

20 EMBR3 MRFG3 VALE3 USIM5 PETR4

21 BRAP4 ELET3 CSNA3 JBSS3 GOAU4

22 BRML3 MRVE3 USIM5 LAME4 ENBR3

23 BBDC4 EMBR3 PETR4 CSNA3 ELET3

24 PCAR4 WEGE3 BRML3 CCRO3 PETR3

25 PETR3 BBAS3 MRFG3 POMO4 BRKM5

26 RENT3 CCRO3 PETR4 POMO4 EMBR3

Continued on next page
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Φ assets

27 USIM5 WEGE3 CYRE3 BRAP4 BRML3

28 SBSP3 BRML3 RENT3 BBAS3 VALE3

29 VALE3 JBSS3 EMBR3 PETR4 MRVE3

30 PETR3 BBDC4 ENBR3 BBAS3 SBSP3

31 WEGE3 BRAP4 CSNA3 CMIG4 ELET3

32 GGBR4 PCAR4 WEGE3 BBAS3 PETR4

33 JBSS3 BBDC4 USIM5 ENBR3 CMIG4

34 JBSS3 ENBR3 CCRO3 BRML3 CMIG4

35 GGBR4 ELET3 BBAS3 RENT3 CCRO3

36 WEGE3 BRML3 EMBR3 PCAR4 BBAS3

37 MRVE3 CSAN3 LAME4 MRFG3 PETR4

38 MRVE3 CYRE3 CSAN3 GGBR4 GOAU4

39 BBAS3 LAME4 CSAN3 BRML3 ITSA4

40 RENT3 CYRE3 SBSP3 MRVE3 JBSS3

41 LAME4 MRFG3 PETR4 MRVE3 ENBR3

42 EMBR3 JBSS3 VALE3 PETR3 BRAP4

43 BRKM5 EMBR3 ITSA4 BRML3 MRVE3

44 PETR4 GOAU4 CCRO3 POMO4 LAME4

45 EMBR3 CYRE3 LREN3 MRFG3 ENBR3

46 CYRE3 PETR4 CMIG4 MRFG3 CSNA3

47 CCRO3 PETR4 WEGE3 MRFG3 MRVE3

48 POMO4 MRFG3 LAME4 ITSA4 BRAP4

49 BBDC4 ENBR3 POMO4 BRML3 JBSS3

50 LAME4 BRKM5 ELET3 JBSS3 VALE3

51 PETR3 POMO4 BRAP4 USIM5 GGBR4

52 MRFG3 PETR4 VALE3 BRML3 ELET3

53 PETR4 CMIG4 BRML3 EMBR3 SBSP3

54 RENT3 USIM5 PCAR4 PETR3 MRVE3

55 MRVE3 RENT3 LREN3 GOAU4 PETR3

56 ENBR3 CCRO3 USIM5 MRVE3 BRAP4

57 CCRO3 CSAN3 RENT3 USIM5 BBAS3

58 MRVE3 LAME4 USIM5 WEGE3 GOAU4

59 GOAU4 ENBR3 MRFG3 PETR4 CSNA3

60 MRVE3 JBSS3 LAME4 MRFG3 BBDC4

61 PCAR4 EMBR3 POMO4 ITSA4 RENT3

62 LREN3 CMIG4 GOAU4 WEGE3 CSAN3

Continued on next page
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Φ assets

63 PETR4 CMIG4 PETR3 BRKM5 MRFG3

64 USIM5 MRFG3 BBDC4 WEGE3 CSNA3

65 PETR3 CSAN3 CCRO3 BBAS3 BBDC4

66 WEGE3 LAME4 GOAU4 CSAN3 RENT3

67 JBSS3 GOAU4 ITSA4 BRAP4 PETR3

68 USIM5 CMIG4 MRVE3 CYRE3 BRAP4

69 EMBR3 BRKM5 USIM5 CSNA3 BBDC4

70 PCAR4 BRML3 POMO4 BRAP4 BBDC4

71 GGBR4 CYRE3 LREN3 PETR3 JBSS3

72 POMO4 BRKM5 ELET3 JBSS3 CSNA3

73 ELET3 CCRO3 EMBR3 GGBR4 USIM5

74 SBSP3 LAME4 BBDC4 POMO4 CYRE3

75 USIM5 CSAN3 PETR4 GOAU4 LAME4

76 CMIG4 VALE3 GOAU4 EMBR3 BBDC4

77 CSNA3 GGBR4 JBSS3 GOAU4 ITSA4

78 BRML3 ITSA4 JBSS3 GOAU4 EMBR3

79 POMO4 BRAP4 PCAR4 CSNA3 GGBR4

80 BBAS3 VALE3 ENBR3 WEGE3 CCRO3

81 ITSA4 RENT3 ELET3 CYRE3 CSNA3

82 CSAN3 WEGE3 CSNA3 BBAS3 PETR4

83 WEGE3 MRFG3 RENT3 USIM5 CYRE3

84 BRAP4 CYRE3 PETR3 PETR4 LAME4

85 EMBR3 ENBR3 BRML3 MRVE3 BRKM5

86 SBSP3 PETR3 ITSA4 CCRO3 BRML3

87 ITSA4 LREN3 EMBR3 USIM5 CMIG4

88 MRFG3 WEGE3 CMIG4 JBSS3 BBDC4

89 CCRO3 VALE3 PCAR4 CSNA3 RENT3

90 JBSS3 ELET3 ENBR3 CMIG4 PETR3

91 EMBR3 ENBR3 BBDC4 CSNA3 BBAS3

92 GOAU4 RENT3 LREN3 BBAS3 JBSS3

93 LREN3 RENT3 WEGE3 POMO4 ELET3

94 CYRE3 PCAR4 MRVE3 SBSP3 RENT3

95 VALE3 EMBR3 CSNA3 SBSP3 LREN3

96 BRAP4 VALE3 POMO4 USIM5 BBDC4

97 MRFG3 POMO4 PCAR4 WEGE3 CMIG4

98 BRAP4 PCAR4 WEGE3 USIM5 ELET3

Continued on next page
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Φ assets

99 ELET3 BRML3 USIM5 BRKM5 GOAU4

100 PCAR4 GOAU4 BRKM5 JBSS3 USIM5

101 BBAS3 CCRO3 LAME4 BRML3 ELET3

102 PETR4 BRML3 ELET3 ENBR3 GOAU4

103 BRML3 BRKM5 GGBR4 USIM5 POMO4

104 RENT3 BBDC4 VALE3 JBSS3 ELET3

105 BRAP4 BRKM5 LREN3 BRML3 CSAN3

106 ITSA4 JBSS3 BRAP4 CSNA3 BRML3

107 BBAS3 BBDC4 EMBR3 POMO4 SBSP3

108 ENBR3 SBSP3 USIM5 MRVE3 VALE3

109 BBDC4 ELET3 BRKM5 CYRE3 PETR3

110 SBSP3 CMIG4 WEGE3 PCAR4 USIM5

111 PCAR4 SBSP3 BRAP4 EMBR3 LAME4

112 LAME4 LREN3 PCAR4 CYRE3 BRAP4

113 CSNA3 CCRO3 PETR4 ITSA4 PCAR4

114 USIM5 PETR3 GGBR4 EMBR3 LREN3

115 GGBR4 ELET3 CCRO3 VALE3 GOAU4

116 CMIG4 VALE3 BRML3 BBAS3 GOAU4

117 ITSA4 LREN3 WEGE3 ELET3 BBDC4

118 ENBR3 USIM5 PETR3 BRML3 CCRO3

119 CSAN3 ITSA4 USIM5 CSNA3 PETR3

120 MRVE3 BBAS3 CSNA3 PCAR4 LAME4

121 ELET3 PETR3 CSNA3 BRAP4 LREN3

122 CCRO3 WEGE3 CMIG4 GGBR4 GOAU4

123 MRVE3 CSAN3 PCAR4 BRAP4 BBAS3

124 CSNA3 JBSS3 SBSP3 BBDC4 GGBR4

125 MRVE3 CSAN3 PETR4 BBAS3 GGBR4

126 MRFG3 ENBR3 CSAN3 VALE3 PETR3

127 USIM5 VALE3 POMO4 PCAR4 CSNA3

128 POMO4 CCRO3 CYRE3 PETR4 ENBR3

129 LAME4 CCRO3 ELET3 CYRE3 MRFG3

130 SBSP3 CSNA3 CMIG4 PETR3 GOAU4

131 BRML3 PETR3 PCAR4 BBAS3 VALE3

132 PETR4 LAME4 BBDC4 ENBR3 BRML3

133 JBSS3 ELET3 CSNA3 SBSP3 ENBR3

134 SBSP3 ELET3 USIM5 VALE3 WEGE3

Continued on next page
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Φ assets

135 CSNA3 EMBR3 SBSP3 ITSA4 GOAU4

136 GGBR4 CMIG4 BRKM5 CSNA3 LAME4

137 ENBR3 BRAP4 LAME4 ITSA4 POMO4

138 CMIG4 USIM5 WEGE3 BBDC4 SBSP3

139 SBSP3 CYRE3 MRVE3 PETR4 BBDC4

140 RENT3 PCAR4 POMO4 EMBR3 LREN3

141 ENBR3 BBDC4 BBAS3 JBSS3 CCRO3

142 LREN3 EMBR3 WEGE3 GGBR4 ITSA4

143 BRML3 SBSP3 VALE3 BRKM5 CYRE3

144 CSNA3 SBSP3 POMO4 PETR3 VALE3

145 CMIG4 PETR3 BBDC4 SBSP3 BBAS3

146 BRML3 LREN3 RENT3 CSNA3 CCRO3

147 MRVE3 GOAU4 BRAP4 BRKM5 LREN3

148 ITSA4 GOAU4 USIM5 BRML3 CYRE3

149 BRAP4 LAME4 ITSA4 LREN3 RENT3

150 WEGE3 LREN3 CYRE3 JBSS3 CSNA3

151 RENT3 BBAS3 LAME4 BRML3 SBSP3

152 CCRO3 CSAN3 USIM5 PETR3 BBAS3

153 CSNA3 VALE3 LREN3 RENT3 CCRO3

154 GOAU4 BRML3 JBSS3 POMO4 BRKM5

155 CMIG4 CYRE3 ITSA4 POMO4 USIM5

156 CCRO3 SBSP3 BBDC4 BRAP4 USIM5

157 LREN3 POMO4 EMBR3 PCAR4 CCRO3

158 USIM5 BRKM5 ELET3 CSAN3 MRVE3

159 CSAN3 CSNA3 CCRO3 PCAR4 CYRE3

160 ITSA4 CSAN3 BBAS3 CYRE3 SBSP3

161 GOAU4 SBSP3 BRAP4 MRFG3 ENBR3

162 LREN3 USIM5 CCRO3 BRKM5 ENBR3

163 MRVE3 BRML3 ENBR3 RENT3 JBSS3

164 CMIG4 BBDC4 WEGE3 CSNA3 CSAN3

165 CCRO3 PETR4 ENBR3 BRKM5 GOAU4

166 POMO4 CSAN3 WEGE3 VALE3 USIM5

167 GGBR4 MRFG3 ELET3 PETR4 CYRE3

168 PCAR4 RENT3 MRVE3 BRML3 PETR3

169 MRFG3 ITSA4 CSAN3 LAME4 BRKM5

170 VALE3 RENT3 CMIG4 GOAU4 ITSA4

Continued on next page
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Φ assets

171 PETR3 ITSA4 ENBR3 PETR4 VALE3

172 EMBR3 GOAU4 MRVE3 GGBR4 LREN3

173 BRKM5 GOAU4 BRML3 LREN3 RENT3

174 CSNA3 CCRO3 PETR4 JBSS3 BRAP4

175 MRFG3 MRVE3 WEGE3 ITSA4 BRAP4

176 MRVE3 RENT3 LAME4 LREN3 BBAS3

177 VALE3 CMIG4 CCRO3 PETR3 PCAR4

178 BBAS3 CSNA3 BRKM5 LREN3 ITSA4

179 LREN3 PCAR4 BRKM5 CCRO3 VALE3

180 CMIG4 RENT3 BRAP4 GGBR4 CSAN3

181 LAME4 JBSS3 BRKM5 BBDC4 ENBR3

182 CCRO3 VALE3 BRML3 SBSP3 RENT3

183 PETR3 ITSA4 MRFG3 PCAR4 MRVE3

184 LAME4 ENBR3 BRML3 VALE3 USIM5

185 WEGE3 BBAS3 SBSP3 ITSA4 ELET3

186 BRAP4 MRFG3 BBDC4 WEGE3 SBSP3

187 ENBR3 USIM5 VALE3 MRFG3 BRKM5

188 GGBR4 POMO4 PETR4 PCAR4 ENBR3

189 JBSS3 MRVE3 ENBR3 VALE3 ELET3

190 BBAS3 VALE3 CMIG4 SBSP3 LREN3

191 CMIG4 EMBR3 BRKM5 USIM5 CSNA3

192 LREN3 MRVE3 PETR4 BBAS3 CMIG4

193 GOAU4 EMBR3 MRVE3 CSNA3 RENT3

194 GGBR4 PETR3 CMIG4 BRAP4 BRKM5

195 BRML3 CMIG4 BRKM5 PETR4 CCRO3

196 BBAS3 RENT3 EMBR3 CYRE3 BRKM5

197 MRVE3 VALE3 BRAP4 BRKM5 LREN3

198 MRVE3 POMO4 VALE3 GGBR4 BBAS3

199 GOAU4 LAME4 BBAS3 JBSS3 MRFG3

Table A.1: The list off all random portfolios generated

with the available assets listed in Table 6.1.
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Φ
p

0.45 0.50 0.55 0.60 0.65 0.70 0.75

2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
9 9 9 9 9 9 9 9
12 12 12 12 12 12 12 12
15 15 15 15 15 15 15 15
16 16 16 16 16 16 16 16
24 24 24 24 24 24 24 24
27 27 27 27 27 27 27 27
28 28 28 28 28 28 28 28
32 32 32 32 32 32 32 32
34 34 34 34 34 34 34 34
39 39 39 39 39 39 39 39
50 50 50 50 50 50 50 50
51 51 51 51 51 51 51 51
53 53 53 53 53 53 53 53
58 58 58 58 58 58 58 58
60 60 60 60 60 60 60 60
62 62 62 62 62 62 62 62
65 65 65 65 65 65 65 65
71 71 71 71 71 71 71 71
75 - - - - - - 75
80 80 80 80 80 80 80 80
90 90 90 90 90 90 90 90
94 94 94 94 94 94 94 -
98 98 98 98 98 98 98 98
99 99 99 99 99 99 99 99
105 105 105 105 105 105 105 105
106 106 106 106 106 106 106 106
110 110 110 110 110 - - -
116 116 116 116 116 116 116 116
117 117 117 117 117 117 117 117
119 119 119 119 119 119 119 119
122 122 122 122 122 122 122 122
131 131 131 131 131 131 131 131
132 132 132 132 132 132 132 132
133 133 133 133 133 133 133 133
136 136 136 136 136 136 136 136
142 142 142 142 142 142 142 142
146 - - - - 146 146 146
149 149 149 149 149 149 149 149
162 162 162 162 162 162 162 162
165 165 165 165 165 165 165 165
171 171 171 171 171 171 171 171
172 172 172 172 172 172 172 -
173 173 - - - - - -
174 - - - - - - 174
177 177 177 177 177 177 177 177
179 179 179 179 179 179 179 179
181 181 181 181 181 181 181 181
193 193 193 193 193 193 193 193
194 - 194 194 194 194 194 194
195 195 195 195 195 195 195 195
197 197 197 197 197 197 197 197

Table A.2: Portfolios outliers (54) for the first quartile of the validation phase,
92.6% of equally portfolios.
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Φ
p

0.45 0.50 0.55 0.60 0.65 0.70 0.75

8 8 8 8 8 8 8 8
10 10 10 10 10 10 10 10
12 12 12 12 12 12 12 12
13 13 13 13 13 13 13 13
17 17 17 17 17 17 - -
20 20 20 20 20 20 20 20
22 22 22 22 22 22 22 22
30 30 30 30 30 30 30 30
35 35 35 35 35 35 35 35
36 36 36 36 36 36 36 36
46 46 46 46 46 46 46 46
47 47 47 47 47 47 47 47
53 - 53 53 - - - -
54 54 54 54 54 54 54 54
55 55 - 55 55 55 55 55
56 56 56 56 56 56 56 56
57 57 57 57 57 57 57 57
64 64 64 64 64 64 64 64
81 81 81 81 81 81 81 81
86 86 86 86 86 86 86 86
88 88 88 88 88 88 88 88
90 90 90 90 90 90 90 90
92 92 - - - - - -
93 93 93 93 93 93 93 93
94 94 94 94 94 94 94 94
98 98 98 98 98 98 98 98
99 99 99 99 99 99 99 99
102 102 102 102 102 102 102 102
103 103 103 103 103 103 103 103
105 105 105 105 105 105 105 105
109 - 109 - 109 109 109 109
110 110 110 110 110 110 110 110
117 117 117 117 117 117 117 117
120 120 120 120 120 120 120 120
123 123 123 123 123 123 123 123
132 132 132 132 132 132 132 132
133 133 133 133 133 133 133 133
139 139 139 139 139 139 139 139
146 146 146 146 146 146 146 146
149 - - - - - 149 149
152 152 152 152 152 152 152 152
155 155 155 155 155 155 155 155
164 164 164 164 164 164 164 164
168 168 168 168 168 168 168 168
171 171 171 171 171 171 171 171
176 176 176 176 176 176 176 176
177 177 177 177 177 177 177 177
178 178 178 178 178 178 178 178
180 180 180 180 180 180 180 180
190 190 190 190 190 190 190 190
191 191 191 191 191 191 191 191
197 197 197 197 197 197 197 197
199 199 199 199 199 199 199 199

Table A.3: Portfolios outliers (53) for the first quartile of the test phase, 94.3%
of equally portfolios.
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Φ MLPi OPTi

0 21.3764 21.4660
1 26.2459 24.7897
2 22.6930 22.1606
3 35.5196 30.4083
4 25.6483 24.4783
5 28.6469 25.7906
6 30.6572 28.8537
7 27.1987 25.3064
8 21.9739 23.8259
9 29.4588 26.3910
10 22.2361 24.5319
11 24.9076 22.8587
12 23.6228 28.3732
13 27.0295 28.4800
14 26.6493 25.1782
15 24.1698 24.0829
16 24.6036 23.0059
17 25.3558 25.7544
18 28.7570 26.0799
19 24.3715 22.9543
20 18.6312 25.6146
21 32.2445 31.0529
22 20.7647 25.9041
23 27.8320 24.7009
24 21.8039 22.0890
25 31.8781 27.4305
26 30.3256 26.6499
27 28.7854 26.1979
28 21.6063 20.6922
29 27.2708 24.0239
30 16.3715 19.0553
31 29.3962 27.7882
32 22.5623 21.0432
33 31.1218 27.3114
34 26.4200 26.6802
35 20.1561 24.0747
36 20.5876 21.5507
37 24.3729 24.1161
38 26.9276 26.5382
39 22.2736 21.2154
40 26.6563 25.1835
41 24.6135 24.2926
42 26.0126 23.2078
43 23.6551 23.5301
44 34.6697 29.4642
45 26.9076 24.7112
46 27.3938 28.3707
47 20.1984 24.2442
48 33.9050 29.1408
49 34.0305 28.4243

Φ MLPi OPTi

50 29.8810 25.9807
51 34.4951 29.4589
52 26.9981 25.7423
53 23.8865 24.2843
54 20.3889 24.3765
55 24.0229 24.5569
56 24.1198 25.0810
57 22.5440 23.2174
58 30.9257 27.8918
59 31.6506 28.3854
60 28.7948 25.5181
61 30.4712 26.2005
62 29.6063 25.9314
63 26.6767 24.7199
64 22.6712 26.9037
65 19.5795 19.0937
66 27.9879 24.9531
67 30.3418 26.7086
68 29.0682 27.4473
69 29.0755 25.2235
70 29.3504 25.3955
71 27.6225 25.6309
72 37.7185 33.6888
73 29.0078 28.2722
74 31.6288 25.9801
75 30.0586 26.6511
76 29.8321 24.3590
77 30.9798 29.2802
78 31.7203 28.4432
79 30.6977 28.4837
80 20.6121 20.2308
81 25.2815 27.0766
82 25.2713 22.2295
83 30.8348 27.6296
84 22.8447 21.8884
85 23.5896 23.5610
86 20.3548 22.2476
87 28.5120 26.2051
88 26.1744 26.7806
89 23.4299 22.4949
90 27.2915 28.1622
91 26.4298 21.7294
92 25.5824 25.2916
93 22.1250 28.3337
94 20.3584 22.3631
95 24.3108 22.8580
96 31.5391 26.0379
97 32.2249 30.0158
98 24.1700 26.2884
99 25.7414 30.1945

Φ MLPi OPTi

100 31.5325 29.0645
101 26.2772 23.7046
102 25.8946 27.3953
103 25.0811 31.0637
104 28.5932 24.3862
105 19.9040 22.3714
106 29.2894 26.9311
107 25.1828 24.1721
108 25.4081 23.9237
109 22.9855 23.5032
110 22.4953 25.6093
111 22.1412 22.1098
112 23.7761 22.0300
113 24.0160 22.9460
114 29.1410 25.0808
115 31.4019 26.4320
116 26.8350 24.7382
117 14.6261 22.1863
118 27.4507 25.1058
119 29.8684 25.5742
120 22.3449 22.8777
121 29.3454 25.2626
122 29.7067 27.2814
123 16.7191 20.9663
124 29.8764 25.4680
125 23.8796 21.7440
126 25.5166 22.8767
127 34.8707 29.1099
128 31.2040 27.1571
129 29.7601 27.2974
130 31.1336 27.6335
131 21.1384 19.9468
132 20.4298 21.0204
133 27.4946 28.5703
134 28.1065 25.7139
135 31.2295 26.7934
136 26.5760 26.5376
137 30.2893 26.8234
138 27.2673 24.6547
139 20.2309 21.2187
140 30.3182 25.6841
141 24.8807 21.6712
142 23.6458 23.0033
143 23.7465 22.6368
144 33.0308 27.0595
145 21.8346 20.4750
146 20.2299 24.0991
147 28.9297 24.7452
148 30.0253 28.7320
149 20.9589 21.6054

Φ MLPi OPTi

150 27.8264 26.8797
151 21.3231 21.4952
152 17.9808 22.9325
153 25.3126 22.5631
154 37.3740 33.0406
155 30.2019 32.2274
156 25.6772 23.0260
157 30.4631 25.7547
158 28.4499 27.1921
159 28.0996 24.2417
160 21.0847 21.1855
161 28.1356 26.7655
162 27.0175 24.1860
163 27.3192 25.3172
164 20.4403 24.1587
165 27.4120 24.5028
166 32.9810 28.2640
167 30.1227 27.9677
168 20.1391 22.5156
169 26.2966 24.0218
170 28.9092 25.3443
171 16.2698 19.6160
172 28.7527 25.8965
173 25.7843 24.9687
174 29.7989 25.8514
175 26.4183 24.6893
176 19.3190 20.8160
177 21.0936 22.0965
178 19.7403 22.1318
179 21.6168 20.4804
180 21.7604 24.5609
181 24.5649 23.1792
182 21.6168 21.7939
183 24.4197 23.7276
184 26.4966 24.4354
185 24.9511 22.7998
186 25.5460 22.7922
187 29.8217 25.7627
188 29.5522 26.7898
189 28.0617 26.2682
190 19.5489 21.0924
191 26.3572 28.4894
192 24.2927 22.0446
193 31.1274 27.6182
194 24.3310 24.2938
195 25.1469 24.0723
196 21.7757 22.2202
197 16.8034 20.9560
198 30.9263 25.8202
199 23.9117 28.1967

Table A.4: The Sharpe ration, computed by sharpe =
(RΦ−Rf )

σΦ
, where RΦ is the

annual return of portfolio Φ, and Rf is a free risk return, here defined at 10%,
and the σΦ is the annual standard deviation. The Sharpe ratio is better suited
for portfolios comparison, portfolios with higher Sharpe ratios are preferable.
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OPTi MLPi OLMAR BCRP MLPi (ii) MLPi (i)
p

0.4500 3.4259 3.6158 6.7063 1.0584 3.9153 4.2275
0.5000 5.8808 6.4560 6.7063 1.0584 7.2189 8.1389
0.5500 10.2273 11.8045 6.7063 1.0584 13.6246 15.8112
0.6000 18.0388 22.1050 6.7063 1.0584 26.2877 31.4901
0.6500 32.2858 42.4561 6.7063 1.0584 52.0406 63.6138
0.7000 58.7342 83.8137 6.7063 1.0584 105.7120 131.7604
0.7500 108.7999 170.4091 6.7063 1.0584 221.2186 276.9419

Table A.5: The monthly average wealth achieved by the algorithms for each
accuracy level.
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